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ABSTRACT

A general analysis of poroelasticity for vertical transeer
isotropy (VTI) shows that four eigenvectors are pure shezten
with no coupling to the pore-fluid mechanics. The remainvag t
eigenvectors are linear combinations of pure compressiah a
uniaxial shear, both of which are coupled to the fluid mechan-
ics. After reducing the problem to ax22 system, the analysis
shows in a relatively elementary fashion how a poroelagte s
tem with isotropic solid elastic frame, but with anisotraptro-
duced through the poroelastic coefficients, interacts thighme-
chanics of the pore fluid and produces shear dependence @n flui
properties in the overall mechanical system. The analysiws,
for example, that this effect is always present (though sines
small in magnitude) in the systems studied, and can be quge |
(up to a definite maximum increase of 20 per cent) in some rocks
— including Spirit River sandstone and Schuler-Cotton &all
sandstone.

INTRODUCTION

An important paper by Gassmann (1951) concerns the ef-
fects of fluids on the mechanical properties of porous rodk. H
main result is the well-known fluid-substitution formuldn#t
now bears his name) for the bulk modulus in undrained, ipitro
poroelastic media. He also postulated that the effectieaish
modulus would be independent of the mechanical properfies o
the fluid when the medium is isotropic. That the independence
of shear modulus from fluid effects is guaranteed for isatrop
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media at very low or quasistatic frequencies was shown tgcen
by Berryman (1999) to be tightly coupled to the original bulk
modulus result of Gassmann; each result implies the other in
isotropic media. It has gone mostly without discussion ia th
literature that Gassmann (1951) also derived generaltsefaul
anisotropic porous rocks in the same 1951 paper. It is nat toar
see that these results imply that, contrary to the isotrcgse, the
overall undrained shear modulus in fact generally doesmt&pe
on fluid properties in anisotropic media. However, Gassrisann
paper does not remark at all on this difference in behavier be
tween isotropic and anisotropic porous rocks. Brown and Kor
ringa (1975) also address the same class of problems, inglud
both isotropic and anisotropic cases, but again they doetot r
mark on the shear modulus results in either case. Norris3)199
studies partial saturation in isotropic layered mateiiatbe low-
frequency regime~£ 100 Hz) and takes as a fundamental pos-
tulate that Gassmann'’s results hold for the low frequenepash
modulus, but it seems that some justification should be deali
for such an assumption, and furthermore some indicatiotsof i
range of validity established.

On the other hand, Hudson (1981), in his early work
on cracked solids, explicitly demonstrates differencesvben
fluid-saturated and dry cracks and relates his work to that of
Walsh (1969) and O’Connell and Budiansky (1974), but do¢s no
make any connection to the work of either Gassmann (1951), or
Brown and Korringa (1975). Mukerji and Mavko (1994) show
numerical results based on work of Gassmann (1951), Brown
and Korringa (1975) and Hudson (1981) demonstrating the flui



dependence of shear in anisotropic rock, but again they tieno rized in the final section.

mark on these results at all. Mavko and Jizba (1991) use desimp

reciprocity argument to establish a direct, but approxénedn-

nection between undrained shear response and undrained comFLUID-SATURATED POROELASTIC MEDIA

pressional response in rocks containing cracks. Berryman a In contrast to traditional elastic analysis, the presenceck
Wang (2001) show that deviations from Gassmann’s results su of a saturating pore fluid introduces the possibility of adiad
ficient to produce shear modulus dependence on fluid mechan-tional control field and an additional type of strain var@blhe
ical properties require the presence of anisotropy on the mi pressure in the fluid is a new field parameter that can be con-

croscale, thereby explicitly violating the microhomogengand trolled. Allowing sufficient time for global pressure edhikation
microisotropy conditions implicit in Gassmann’s origini@riva- will permit us to consideps to be a constant throughout the per-
tion. Berrymanet al. (2002a) go further and make use of dif-  colating (connected) pore fluid, while restricting the gsa to
ferential effective medium analysis to show explicitly htve guasistatic processes. The chadge the amount of fluid mass

undrained, overall isotropic shear modulus can depend @h flu contained in the pores [see Biot (1962) or Berryman and Térigp
trapped in penny-shaped cracks. Meanwhile, laboratomyltees (1985)] is a new type of strain variable, measuring how much o
[see Berrymaret al. (2002b)] show conclusively that the shear the original fluid in the pores is squeezed out during the com-
modulus does depend on fluid mechanical properties for low- pression of the pore volume while including the effects aheo
porosity, low-permeability rocks, and high-frequencydedtory pression or expansion of the pore fluid itself due to changes i
experiments{ > 500 kHz). ps. Itis most convenient to write the resulting equations e

One thing lacking from all the preceding work is a simple of compliances rather than stiffnesses, so the basic euutti
example showing how the presence of anisotropy influenees th be considered takes the following form for isotropic media:
shear modulus, and specifically when and how the shear medulu

becomes fluid dependent. Our main purpose in the present work el S11 S12 S12 —P o011
is therefore to demonstrate, in a set of rather simple exasnpl &9 S12 S11 S12 —P 022
how the shear behavior becomes dependent on fluid properties e | | s12 s12 sig -B o33 |’ 1)
in anisotropic media — even though overall shear modulus is - —B-B-By —ps

always independent of the fluid properties in isotropic raeti
sufficiently low frequencies, whether drained or undrainiedo
other distinct but related analyses addressing this tapie been
presented recently by the author (Berryman, 2004a,c). Bbth
these prior papers have made explicit use of layered meatia, ¢
posed of isotropic poroelastic materials, together withcgxe-
sults for such media based on Backus averaging (Backus).1962
In contrast, the present analysis doesmake use of such a spe-
cific model, and is therefore believed to be about as simple as
possible, while still achieving the level of understandifegired
for this rather subtle technical issue. One important siilcpt
tion we make here in order to separate what part is due to poroe
lastic effects, and what part would be present in any eléistic
possibly zero permeability porous medium) is to model eagh m
terial as if the elastic part is entirely isotropic, whileethoroe- Si1= 1 — ﬁ 2)
lastic effects e, the Biot-Willis coefficients (Biot and Willis, Ear  Gur(3Ndr +2Gar)
1957) for the anisotropic overall material] supply the osyrce
of anisotropy in the system. Thus, we specifically distisbuwo and
possible sources of anisotropy, the elastic or “hard” aniqy
that is assumed not to be present here, and the poroelastic or S12= _M7 (3)
“soft” anisotropy that is the source of all the effects we wian Edr
study in this paper.

Our analysis for general transversely isotropic mediaés pr ~ Where the drained Young's modulks;, is defined by the second

whereg;j andoj; fori, j = 1,2,3 are the components of overall
strain and stress, respectively, in 3D. The constants aingea
the matrix on the right hand side will be defined in the follogi
two paragraphs. It is important to write the equations they w
rather than using the inverse relation in terms of the giffes,
because the complianceg appearing in (1) are simply related
to the drained elastic constaitg andGq; in the same way they
are related in normal elasticity, whereas the individuéhstsses
obtained by inverting the equation in (1) must contain coupl
terms through the parametgrandy that depend on the pore and
fluid compliances. Thus, we find that

sented in the next three sections. In particular the “eigefors” equality of (2) and the drained Poisson’s ratio is deterchinye
section also introduces the effective undrained shear lnedel-

evant to our general discussion. Examples are then prestmte Adr

two sandstones. The paper’s results and conclusions amaum Var = 2(Agr +Gqr) )
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When the external stress is hydrostatiazse 011 = 022 =
033, equation (1) telescopes down to

e (0}

(&)= (XK o) (2,

wheree = ey1 + €25+ €33, Kar = Agr + 3G is the drained bulk
modulusa = 1— Kqyr/Kn is the Biot-Willis parameter (Biot and
Willis, 1957) with Ky, being the bulk modulus of the solid miner-
als present, and Skempton’s pore-pressure buildup paeaBet
(Skempton, 1954) is given by

()

B 1
T 14+ Kp(1/Ks —1/Km)

(6)

New parameters appearing in (6) are the bulk modulus of the
pore fluidKs and the pore modulusl;1 = a/@Kqr where@is
the porosity. The expressions farand B can be generalized
slightly by supposing that the solid frame is composed ofemor
than one constituent, in which case g appearing in the def-
inition of a is replaced byKs and theK, appearing explicitly in
(6) is replaced b¥K, (see Brown and Korringa, 1975; Rice and
Cleary, 1976; Berryman and Wang, 1995). This is an important
additional complication (Berge and Berryman, 1995), bute+ f
the sake of desired simplicity — we will not pursue the matter
further here.

Comparing (1) and (5), we find that

a
B= 3 )
and
o
V=BG (8)

RELATIONS FOR ANISOTROPY IN POROELASTIC MA-
TERIALS

Gassmann (1951), Brown and Korringa (1975), and others
have considered the problem of obtaining effective corstim
anisotropic poroelastic materials when the pore fluid idioed
within the pores. The confinement condition amounts to a con-
straint that the increment of fluid conteht= 0, while the exter-
nal loadingo is changed and the pore-fluid pressprés allowed
to respond as necessary and thus equilibrate.

tion of (1)

e S11 S12 S13 —P1 011
e | _ | s12 22 3 P 022 )
€33 S13 23 33 —Ps3 033
—C —B1 B2 —Bs3 ¥ —Pt

Three shear contributions have been immediately excluaded f
consideration since they can easily be shown not to intenaet
chanically with the fluid effects. This form is not complstel
general in that it includes only orthorhombic, cubic, hexaay,
and all isotropic systems. Also, we have assumed that the-mat
rial axes are aligned with the spatial axes. But this latsuep-
tion is not significant for the derivation that follows. Suah
assumption is important when properties of laminated risdser
having arbitrary orientation relative to the spatial axesdto be
considered, but we do not treat this more general problem her
If the fluid is confined, thed = 0 in (9) andps becomes
a linear function ofo11, 022, 033. Eliminating ps from the re-
sulting equations, we obtain the general expression fosttiaén
dependence on external stress under confined conditions:

er1 S11 S12 S13 B1 011
e |=||si2s2ss |-y ' |Bz2| (BLB2B3)| |02
€33 $13 $23 3 B3 033

(gil S §.[3) (011)
=SS S3| | 022) - (10)
S13 3 S33/ \033

Thes;j’s are fluid-drained constants, while tlsf‘f,fs are the fluid-
undrained (or fluid-confined) constants.

The fundamental result (10) was obtained earlier by both
Gassmann (1951) and Brown and Korringa (1975), and may be
written simply as

. BiB;

for i,j=1,2,3. (12)

This expression is just the anisotropic generalizatiomefwell-
known Gassmann equation for isotropic, microhomogeneous
porous media.

EIGENVECTORS FOR TRANSVERSE ISOTROPY

The 3x 3 system (10) can be analyzed fairly easily, and in
particular the eigenfunctions and eigenvalues of thisesystan
be obtained in general. However, such general results do not
provide much physical insight into the problem we are tryimg

To recall an elementary derivation of the Gassmann equation study, so instead of proceeding in this direction we will mew

for anisotropic materials, we consider the anisotropicgaliva-

strict attention to transversely isotropic materials. sTbase is



relevant to many layered earth materials and also indlistr&a
tems, and it is convenient because we can immediately edi@in
one of the eigenvectors from further consideration. Thre&um
ally orthogonal (but unnormalized) vectors of interest are

1 1
-11, V3 = 1
0 -2

1
vi=|1], Vo = (12)
1

Treating these vectors as stresses, the first correspoadsine
ple hydrostatic stress, the second to a planar shear steds,
the third to a pure shear stress applied uniaxially alongzthe
axis (also the same as the symmetry axis for the layeredmyste
Transverse isotropy of the layered system requises:= S,
S13 = S3, and for the poroelastic problefa = 2. Thus, it is
immediately apparent that the planar shear stvg$s an eigen-
vector of the system, and furthermore it results in no cbation
from the pore fluid. Therefore, this vector will be of no fueth
interest here, and the system can thereby be reduced b 2

Compliance Formulation

If we define the effective compliance matrix for the system
as S* having the matrix elements given in (11), then the bulk
modulus for this system is defined in termssphy

1

Ky

1

Ky y (2B +Bs)?,

=V]S'v; = (13)

where theT superscript indicates the transpose, an#gt =
zﬁjzlsj. This is the result usually quoted as Gassmann’s
equation for the bulk modulus of the undrained (or confined)
anisotropic (VTI) system. Also, note that in general

3
'ZLBi =21+ B3 = a/Kqr. (14)

Thus, even thougty is not an eigenvector of this system, it nev-
ertheless plays a fundamental role in the mechanics. Rurthe
more, this role is quite well-understood. What is perhapgssno
well-understood then, especially for poroelastic systemhe
role of v3. Understanding this role will become our main focus
for the remainder of this discussion.
The true eigenvectors of the subproblem of interest, (n
the space orthogonal to the four pure shear eigenvect@ahir
discussed) are necessarily linear combinations @ndvs. We
can construct the relevant contracted operator for tke2 Zub-
system by considering:
vi
(4

9A}, 18A;3> (15)

)5 ()= (154, 3a

(in all cases the superscripts indicate that the pore-fluid effects
are included) and the reduced matrix

T = A ViVl + Aig(VavE +vav] ) + Asavavl (16)
where
Al1 = [2(s11+S12+ 2513) +S33]/9,
Alz= (S11+Si2—Si3—$33)/9; (17)

Ag3= (S11+S1p— 413+ 2533) /18,

Providing some understanding of these connections andrthe i
plications for shear modulus dependence on fluid contemés o
purpose for this work.

First we remark thaf;; = 1/9Ky, whereKy is again the
undrained (or Gassmann) bulk modulus for the system in (13).
Therefore A7, is proportional to the undrained bulk compliance
of this system. The other two matrix elements cannot be given
such simple interpretations in general. To simplify thelgna
sis we note that, at least for purposes of modeling, anipptro
of the compliances;j and the poroelastic coefficierfis can be
treated independently. Anisotropy displayed in #)é&s corre-
sponds mostly to the anisotropy in the solid elastic comptme
of the system, while anisotropy in tif#'s corresponds mostly
to anisotropy in the shapes and spatial distribution of t@g-
ity. We will therefore distinguish these contributions balle
ing anisotropy appearing in trsy’s the “hard anisotropy,” and
the anisotropy in theBi’s will in contrast be called the “soft
anisotropy.”

Now, it is clear that the eigenvectof$0) for this problem
(i.e., for the reduced operat@r) necessarily take the form

cosd sin@

f(6) = Wvl—k %Vsa

(18)

with two solutions for the rotation angl®._ and®, =6+ 7,
guaranteeing that the two solutions (the eigenvectors)rdneg-
onal. Itis easily seen that the eigenvalues are given by

N =3 Mg A2 1Ay~ Ay 22 20| (19

and the rotation angles are determined by

NL/3— AL
VAL,

— (s /25 (g~ A/ 27+ 200032 V2. (20

tan®’. =




One part of the rotation angle is due to the drained (fluid)free
“hard anisotropic” nature of the rock frame material. Welwil
call this part8. The remainder is due to the presence of the fluid
in the pores, and we will call this pad® = 6* — 0 for the “soft
anisotropy.” Using a standard formula for tangents, we have

tan®’, — tanéi

30, =tan | ————— |
==an {1+tanejttan9J

(21)

Furthermore, definite formulas fd@. are found from (20) by
takingy — o (corresponding to air saturation of the pores).

Since

tan@’ -tan@* = —1, (22)

it is sufficient to consider just one of the signs in front o tiad-
ical in (20). The most convenient choice for analytical msgs
turns out to be the minus sign (which corresponds to the eigen
vector with the larger component of pure compression).Heurt
more, it is also clear from the form of (20) that often the habia
of most interest to us here occurs for cases whign# 0.

In the limit of a nearly isotropic solid frame (so the “hard
anisotropy” vanishes and thus we will also call this the “gjua
isotropic” limit), it is not hard to see that

L 1 _ (Bl_ 83)2
337 122Gy, ady

(23)

where Gy, is the drained shear modulus of the quasi-isotropic
solid frame. Similarly, the remaining coefficient

B1—B3)(2P1+Ba)
9y b

Ajg~— ( (24)

since all the solid contributions approximately cancel s t
limit.

Expanding the square root in (19), we also have

N, =6A5+A and A" =3A7—A, (25)

whereA is defined consistently by either of the two preceeding
expressions or by®= A" — A* + 3A11 — 6Az3.

Stiffness formulation

The dual to the problem just studied replaces compliances

everywhere with stiffnesses, and then proceeds as befqra-E
tions (15)—(18) are replaced by
vi
V3

9B}, 188j3) (26)

>C* (vavs) = <188’£3 3681,

(in all cases the superscripts indicate that the pore-fluid effects
are included) and the reduced matrix

(Z)H =Biviv] +Bis(Vivi +Vavi ) + Bigvavl,  (27)
where
Bi1 = [2(C11 +Cio+ 2C15) + C33l/9,
Bis= (C11+Ci2— Ci3—C33)/9, (28)

B33 = (€11 +Ci2— 4C13+ 2C53)/18.

It is a straightforward exercise to check that the two reduce
problems are in fact inverses of each other. We will not repea
this analysis here, as it is wholly repetitive of what haseyba-
fore. The main difference in the details is that the exporssi
for the B’s in terms of thef’'s are rather more complicated than
those for the compliance version, which is also why we chose t
display the compliance formulation instead.

Effective and undrained shear moduli  Geff and Gy

Four shear moduli are easily defined for the anisotropic sys-
tem under study. Furthermorg; = Gy, fori =1,...,4, since
these are all related to the four shear eigenvectors of the sy
tems, and these do not couple to the pore-fluid mechanics. But
the eigenvectors in the reducedk?2 system studied here are
usually mixed in character, being quasi-compressionalasi
shear modes. It is therefore somewhat problematic to find a
proper definition for the fifth shear modulus. The author s a
lyzed this problem previously (Berryman, 2004b), and codeH
that a sensible (though approximate) definition can be made u
ing Gs = Gef¢. There are several different ways of arriving at the
same result, but for the present analysis the most useftleskt
is to expres$e ¢ in terms of the produch . A_ (the eigenvalue
product, which is also the determinant of thec2 compliance
system). The result, which will be quoted here without farth
discussion [see Berryman (2004b) for details], is

1 1 _ x Ak * \2
3K, 26or; — NN =18[A1As— (A7) . (29)
And, sinceA}; = 1/9K,, we have
1 * * \2 *
Gorr 12[A33— (Alg)*/AL] - (30)
eff

To obtain an isotropic average overall undrained shear tasdu
we next take the arthimetic mean of the five shear compliances

[&)]

1
i= G

gl =

1
Gu (31)



Combining these definitions and results gives: qguasi-bulk and the quasi-shear modes. Rather, if one isesea
then the other must decrease. Furthermore, it is certainbyas
1 1 4 (B,—PL)? aB true that the_ presence of pore liquid eithe_r ha_s no effectsmr_ e
G Gr T 15 1-aB Ko strengthensif., stiffens) the porous medium in compression.
u o ) f’rz But this effect on the bulk modulus has been at least paytiall
_ A (B1—B3) { 1 1 } .32 accounted for imA;; = 1/9K* through the original contribution
15 1-o0B derived by Gassmann (1951). So presumably the contribafion
A to compliance cannot be so large as to negate completely the

The f's are defined b = BiKqgr/a. The final equality is pre- liquid effects on the undrained bulk modulus.
sented to emphasize the similarity of the present resuttsose
of Mavko and Jizba (1991) and Berrymanal. (2002b). Setting
B} =0,p5=1,B=1, anda ~ 0 recovers the expressions of
Mavko and Jizba (1991) for the case of a very dilute system of
flat cracks.

Note that (31) is just the Reuss average (lower bound) of the
shear modulus. Also note that the definition (308gf s is actu-
ally based on the Voigt average. In terms of mathematicakyig
the result (32) therefore cannot be considered rigorousniéi-
ther an upper nor a lower bound. The justification for the fialan
comes not from absolute rigor, but instead from frequeneobs
vations thatGey1 is in fact a very close estimate of the energy  yansorm to circles and lines when transforming back amthfo
per unit volume in the fifth shear mode and from the knowledge ponveen these two planes — the shapes of ellipses are not pre-
that the Reuss average tends to be much closer (than the Voigt

. served (except, of course, in the special case — which isgalgc
average) to observed results for many composite systems. S0 4t of isotropy — when the ellipses degenerate to circiiglen-
for these reasons, the result (32) should be viewed, notigs a r

o ) ! vectors are determined by the directions in which the pafts
orous formula (it is not), but as a good physical estimatef t  qhiact of these two curves lie (indicated by red circles).
undrained shear modulus.

For the two sets of examples considered here, the values
TABLE. Elastic and poroelastic parameters of the two rock ~ Used for the moduli of the samples are taken from results con-
samples considered in the text. Bulk and shear moduli of the ~ tainéd in Berryman (2004b), wherein it was shown how certain
grainsKm andGm, bulk and shear moduli of the drained porous !aboratory data could be fit using an elastic differentitéetive

Examples

To clarify the situation, we show some examples in Figures
1-4. The details of the analysis that produces these figuees a
summarized in the Appendix. The main point is that, for the
compliance version of the analysis, the contours of congtian
ergy are ellipses when the vectbrin (18) is interpreted as a
stress. Analogously, when the vector is treated as a stitan,
contours of constant energy are ellipses for the dual (finsss)
formulation. If we choose to think of these figures as diagram
in the complex plane, then we note that — while circles aneklin

frameKgq; andGy;, the effective and undrained shear moduli ~ Medium scheme. These results are summarized inABee.
Get andGy, and the Biot-Willis parameter = 1 — Kgr /K. Figures 1 and 2 present results for Schuler-Cotton Valley
The porosity ip. sandstone. Laboratory data on this material were also miexbe

by Murphy (1982). The values chosen for and33 were; =

- - : — 0.200 /Kg4r and Bz = 0.600/Kg,. The value of the energy used
Elastic/Poroelastic Schuler-Cotton Valley| Spirit River for normalization wat) ~ 9000 GPa. Computed values for the
Parameters Sandstone Sandstone effective and undrained shear moduli w&g ; = 35.8 GPa and
Gm (GPa) 36.7 69.0 Gu =177 GPa.
Gy (GPa) 17.7 12.41 Figures 3 and 4 present results for Spirit River sandstone.
Gar (GPa) 15.7 11.33 I':latl)oralf'orykdata O?ltghgi)% )m_?_therial :/vere Ereserg:led %3[13 Knight an
olen-Hoeksema . The values choserffioand33 were
Cerr (GPa) 35.8 20.11 B1 = 0.250/K4r andPBs = 0.500 /K4r. The value of the energy
Km (GPa) 41.8 30.0 used for normalization wad ~ 9000 GPa. Computed values
Kar (GPa) 13.1 7.04 for the effective and undrained shear moduli weggs = 20.11
a 0.687 0.765 GPa ands, = 1241 GPa.
(0} 0.033 0.052
Discussion
We can compare the results obtained with results obtained
EXAMPLES AND DISCUSSION for the same rocks using differential effective medium tiggo
It is clear from (25) that fluid effects iA cannot increase fit data. The two characteristics that will interest us haes a
the overall compliance eigenvalues simultaneously foh lio¢ (1) comparisons between the values chosen in our examples fo



SCHULER-COTTON VALLEY SS
SCHULER-COTTON VALLEY SS

Normalized Uniaxial Shear Stress

0
Normalized Compressional Stress

Normalized Uniaxial Shear Strain
w

Figure 1. For Schuler-Cotton Valley Sandstone having bulk modulus
Kdgr = 13.1 GPa and shear modulus Gy = 15.7 GPa, the locus of 0 W w
points Z = Ré® [see equation (34)] having constant energy U = 900 -3 -2 No_rrlnalized %ompreisional Sztrain 3 4
GPa, when the linear combination of pure compression and pure uniax-

ial shear is interpreted as stress field applied to the compliance matrix
(solid black line). The plot is in the complex Z-plane, with the inverse
of the corresponding expression for the stiffness energy superposed for
comparison (dashed blue line). Red circles at the two points of intersec-
tion correspond to the two eigenvectors of the system of equations. The
ellipse (solid black line) in this plane corresponds to the more complex
curve in Figure 2.

Figure 2. Same parameters as Figure 1, but the linear combination of
pure compression and pure uniaxial shear is interpreted as a strain field
and is applied to the stiffness matrix (dashed blue line). The plot is again
in the complex Z-plane, with the inverse of the corresponding expression
for the compliance energy superposed for comparison (solid black line).
Red circles at the two points of intersection correspond to the two eigen-
vectors of the system of equations. The ellipse (dashed blue line here)
corresponds to the more complex curve in Figure 1.

the anisotropi®’s and the best fitting crack aspect ratios found

in Berryman (2004b), and (2) comparisons between the magni-

tudes of changes in the overall shear moduli from their @mehin SUMMARY AND CONCLUSIONS

to undrained values. The preceding discussion shows how overall shear modulus
The preferred crack aspect ratios found for Schuler-Cotton dependence on pore-fluid mechanics arises in simple aogsotr
Valley sandstone and Spirit River sandstone in Berryma@4ap (the specific example used was transversely isotropic) anedi

were respectively, 0.015 and 0.0125. Here we found that The results demonstrate in an entirely elementary fasham h
(B,,By) for the same samples were, respectively, (0.20,0.60) and compression-to-shear coupling enters the analysis fep&opic

(0.25,0.50). Clearly, these values are at least weaklyetaad materials, and furthermore how this coupling leads to diera
with those of the aspect ratios for the same samples, but no shear dependence on mechanics of fluids in the pore system.
stronger conclusions can be reached at the present timemsnc These effects need not always be large. However, the ef-
ing these values. fect can be very substantial (on the order of a 10% to 20% in-

Similarly, the comparisons of the changes in shear modulus crease in the overall shear modulus) in cracked or fractonad
magnitude from drained to undrained also show a weak corre- terials, when these pores are liquid-filled. The anisotrapgt
lation. The increases in shear moduli observed in the medsur liquid stiffening effects then both come strongly into playthe
laboratory data for Schuler-Cotton Valley sandstone anidtSp ~ results we see, such as those illustrated in Figures 1-4rtitp
River sandstone are, respectively, about 10%, and 20%. éxs se  ular, if B1 =~ B3, then soft anisotropy does not make a significant
in the TABLE, the magnitude of the changes predicted here is alsp contribution. But, if eithef; << s or 1 >> Bs, then the con-
about 10% in both cases. In fact, we know from related work of tribution can be significant.

Berryman (2004c) that the maximum effect on shear for any het

erogeneous, saturated porous medium is a 20% increasee So th

observed values of about 10% may be considered typical., Thus ACKNOWLEDGMENTS

agreement is good both qualitatively and semi-quantigtiin Work performed under the auspices of the U.S. Department
all cases. We conclude that the theory presented here sotigrr of Energy under contract No. W-7405-ENG-48 and supported

predicting the magnitudes of these shear modulus enhamteme specifically by the Geosciences Research Program of the DOE
due to pore-fluid effects. Office of Basic Energy Sciences, Division of Chemical Scesc



SPIRIT RIVER SANDSTONE

Normalized Uniaxial Shear Stress
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Figure 3. For Spirit River Sandstone having bulk modulus Kg, = 7.04
GPa and shear modulus Ggr = 11.33GPa, the locus of points z= Ré®
[see equation (34)] having constant energy U = 900GPa, when the lin-
ear combination of pure compression and pure uniaxial shear is inter-
preted as stress field applied to the compliance matrix (solid black line).
Otherwise the same type of plot as Figure 1. The ellipse (solid black line)
in this plane corresponds to the more complex curve in Figure 4.

SPIRIT RIVER SANDSTONE

Normalized Uniaxial Shear Strain

-3 -2 -1 0 1 2 3 4
Normalized Compressional Strain

Figure 4. Same parameters as Figure 3, but the linear combination of
pure compression and pure uniaxial shear is interpreted as a strain field
and is applied to the stiffness matrix (dashed blue line). Otherwise the
same as Figure 2. The ellipse (dashed blue line here) corresponds to the
more complex curve in Figure 3.

APPENDIX

The equation of an ellipse centered at the origin whose semi-
major and semi-minor axes are of lengésndb and whose
angle of rotation with respect to thxeaxis in the(x, y)-plane isy
is given by

(xcosy + ysiny)?/a? + (—xsiny 4+ ycosp)?/b? = 1. (33)

For comparison, when a stress of magnituge/x2 +y2 is ap-
plied to a poroelastic system, the energy stored in the tinjsio
media of interest here [using (16) and (18)] is given by

U(r,0) = 3r? | A11c0 0 + 2v/2A13c0BSING + 2Az3sin? 6}
=RU(r0,0), (34)

where in the second equati®= r/ro, andrg in an arbitrary
number (say unity) having the dimensions of stréss, dimen-
sions of Pa). It is not hard to see that, wHe(r,0) = const

the two equations (33) and (34) have the same functional form
and, therefore, that contours of constant energy in the tmp
(z=x+1y) plane are ellipses. Furthermore, we can solve for the
parameters of the ellipse by settibg= 1 (in arbitrary units for
now) in (34) and then factoring out of both equations. We find
that

cofyP sy
3A11 = 2 + b2
6V/2A13 = sin2Ay 11 (35)
13 a2 b2 )
sify  cofy
=" Tz

These three equations can be inverted for the parametehg of t
ellipse, giving:

1 _ 3A110052L|J—6A338in2lb

a? cosap
1 3Ausify—6AgzcoSY
[ cosap ’ (36)
2V2A13
t = —.
andy A11— 2Ag3

Although contours of constant energy are of some interest,
it is probably more useful to our intuition for the poroelastp-

Geosciences and Biosciences. Work also supported in part byplication to think instead about contours associated wiiliad

the Stanford Exploration Project, while on sabbaticalirigithe

Geophysics Department at Stanford University.

stresses and strains of unit magnitude, forr = 1 (in appropri-
ate units) and varying from 0 tort. We then have the important



functionU (1,0). [Note that, wherB varies instead betweem
and 21, we just get a copy of the behavior fBrbetween 0 and
1. The only difference is that the stress and strain vectove ha
an overall minus sign relative to those on the other halfleir
For a linear system, such an overall phase factor of unit inagn
tude is irrelevant to the mechanics of the problem.] Thewgif
setU (r,8) = const= R?U (ro,8) and plotz= Re® in the com-
plex plane, we will have a plot of the ellipse of interest wirh
determined analytically by

R=+/U(r,8)/U(ro,0) = \/consyU(ro,). (37)

We call R the magnitude of the normalized strege.{ normal-
ized with respect top).

The analysis just outlined can then be repeated for the stiff
ness matrix and applied strain vectors. The mathematiesis c
pletely analogous to the case already discussed, so we atill n
repeat it here. Since strain is already a dimensionlesstityan
the factor that plays the same rolergsabove can in this case
be chosen to be unity if desired, as the main purpose of the fac
tor ro above was to keep track of the dimensions of the stress
components.
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